最简单的例子就是太阳系中太阳,地球和月球的运动。在浩瀚的宇宙中,星球的大小可以忽略不记,所以我们可以把它们看成质点。如果不计太阳系其他星球的影响,那么它们的运动就只是在引力的作用下产生的,所以我们就可以把它们的运动看成一个三体问题。
天体力学中的基本力学模型。研究三个可视为质点的天体在相互之间万有引力作用下的运动规律问题。这三个天体的质量、初始位置和初始速度都是任意的。在一般三体问题中,每一个天体在其他两个天体的万有引力作用下的运动方程都可以表示成3个二阶的常微分方程,或6个一阶的常微分方程。因此,一般三体问题的运动方程为十八阶方程,必须得到18个积分才能得到完全解。然而,目前还只能得到三体问题的10个初积分,因此还远不能解决三体问题。
牛顿的引力理论正确预测两个互相吸引的天体(比如太阳和地球)的运动规律——它们的轨道基本是椭圆形。但如果有3个天体(比如太阳、地球和月球)互相作用,它们的运行轨道有什么规律?这就是著名的“三体问题”。最近,有两位科学家一口气找到了13族新的周期性特解,震惊了科学界。 “三体问题”的提出可以追溯到17世纪80年代,当时英国物理学家、数学家艾萨克·牛顿运用他的引力理论正确预测两个互相吸引的天体(比如太阳和地球)的运动规律——它们的轨道基本是椭圆形。但如果有3个天体,比如太阳、地球和月球相互作用,它们的运行轨道是什么样的?牛顿没能给出通用的特解答案。 简单地说,“三体问题”就是探讨3个质量、初始位置和初始速度都为任意的可视为质点的天体,在相互之间万有引力的作用下的运动规律问题。
三体问题中两个周期性特解举例
随后的200多年中,科学家们为解决这个问题绞尽脑汁,直到1887年德国数学家、天文学家海因里希·布伦斯指出,寻找三体问题的通解注定是无用功,只在特定条件下成立的特解才可能存在。 1889年,法国数学家、天体力学家亨利·庞加莱将复杂的三体问题简化成了所谓的“限制性三体问题”。但他发现,即使对简化了的限制性三体问题,在同宿轨道或者异宿轨道附近,解的形态会非常复杂,以至于对于给定的初始条件,几乎没有办法预测当时间趋于无穷时,这个轨道的最终命运。而这种对于轨道的长时间行为的不确定性,这也就是我们目前称之为“混沌”(chaos)的现象。现在人们知道,通常情况下三体问题的解是非周期性的。 要发现三体问题的周期性特解绝非易事——自“三体问题”被确认以来的300多年中,人们只找到了3族周期性特解。 法国数学家、物理学家约瑟夫·拉格朗日和瑞士数学家、物理学家莱昂哈德·欧拉在18世纪得到了一些结果;20世纪70年代,美国数学家罗杰·布鲁克和法国天文学家米歇尔·赫农借助计算机又得到了更多的结果;1993年,美国数学家、物理学家克里斯·摩尔发现一种奇特现象——特解中3个天体的运动似在一条“8”字形的轨道上互相追逐。上述所有这些被发现的特解可以被归结为下面3族:拉格朗日-欧拉族、布鲁克-赫农族和“8”字形族。拉格朗日-欧拉族的解比较简单,就是三个天体等间距地在圆轨道上运动,就像旋转木马那样。布鲁克-赫农族的解比较复杂,两个天体在里面横冲直撞,第三个天体在它们外围做环绕运动。 要知道,发现新的特解不是一件容易的事:三个天体在空间中的分布可以有无穷多种情况,必须找到合适的初始条件——起始点、速度等,才能使系统在运动一段时间之后回到初始状态,即进行周期性的运动。 现在,科学家们有了新突破。塞尔维亚物理学家米洛万·舒瓦科夫和迪米特拉·什诺维奇发现了新的13族特解。他们在著名学术期刊《物理评论快报》上发表了论文,描述了他们的寻找方法:运用计算机模拟,先从一个已知的特解开始,然后不断地对其初始条件进行微小的调整,直到新的运动模式被发现。这13族特解非常复杂,在抽象空间“形状球”中,就像一个松散的线团。 三体问题特解的族数被扩充到了16族。这一新发现令科学界欢欣鼓舞。多年来一直从事三体问题研究的美国科学家罗伯特·范德贝说,“我非常喜欢这一成果”。另一位美国科学家理查德·蒙哥马利说:“这些结果非常美妙,而且描述非常精彩。”中国科学家周海中表示,他们的成果加深了人们对天体运动的了解,促进了天体力学和数学物理的进一步发展,尤其是对人们研究太空火箭轨道和双星演化很有帮助。
|