UFO中文网

 找回密码
 注册会员
查看: 5180|回复: 1
收起左侧

植物光合作用的过程 光合作用的化学方程式

[复制链接]
online_admin 发表于 2016-10-31 22:20:28 | 显示全部楼层 |阅读模式
  作为地球上最重要的化学反应,植物光合作用对大多数人来说,好像并没有什么太大的秘密,它的过程无非就是吸收二氧化碳,放出氧气。植物光合作用的过程是怎样的呢?光合作用的化学方程式又是怎样?然而,尽管光合作用的发现距今已有200多年的历史,并且已有多位科学家在光合作用前沿研究上频频摘取诺贝尔奖,但其内在复杂机理仍被重重谜团笼罩。科学家坦言,要真正揭开“绿色工厂”的全部谜底,仍有很长的一段路要走。




  为什么科学家们要对光合作用进行研究呢?这是因为人类所需要的各种生产生活资料都是由光合作用产生的,如果没有光合作用就不会有人类的生存与发展。所以,对光合作用的研究是一个重大的生物科学问题,同时又与人类现在面临的粮食、环境、材料、信息问题等密切相关。


  现在世界上每年通过光合作用产生2200亿吨生物质,相当于世界上所有能耗的10倍。要植物产生更多的生物质,就需要提高光合作用效率。通过高新技术转化,我们甚至可以让有些藻类在光合作用的调节与控制下直接产生氢。根据光合作用原理,还可以研制高效的太阳能转换器。光合作用与农业的关系同样密切,农作物干重的90%~95%来自光合作用。高产水稻与小麦的光合作用效率只有1%~1.5%,而甘蔗或者玉米的效率则可达到50%或者更高。如果人类可以人为地调控光能利用效率,农作物产量就会大幅度增加。

植物光合作用的过程 光合作用的化学方程式

植物光合作用的过程 光合作用的化学方程式888 / 作者:伤我心太深 / 帖子ID:22135


  光合作用原理 化学方程式

  1水的光解:2H2O→4[H]+O2(为暗反应提供氢)
  2.ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)
  暗反应折叠
  1.CO2的固定:CO2+C5→2C3
  2.C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5

  1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。

  1,光反应阶段:
  条件:光,色素,酶等。
  变化主要有两类:
  a物质变化:水光解:H2O____光____2[H]+1/2o2.
  ATP的形成:ATP:ADP+Pi+光能___酶____ATP。
  B 能量变化:光能——————ATP中活跃的化学能
  光反应的部位:叶绿体的囊状结构上。
  2,暗反映阶段
  条件:多种酶,不需光。 酶
  变化主要有两类:A物质变化:CO2的固定:CO2+C5————2C3 ,
  酶 [H]
  C3的还原2C3——————(CH2O)+C5+H2O
  ATP
  B 能量变化:ATP中活跃的化学能转化为有机物活跃的化学能
  部位:叶绿体基质中
  总结:光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。 光反应为暗反应供[H]和ATP 和酶。暗反应为光反应供酶和ADP+PI

  植物光合作用的过程:

  1.光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。
  暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。
  暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
  光合作用的机理 : 光合作用是一个很复杂的过程,它至少包含几十个步骤,大体上可分为原初反应、同化力形成和碳同化3大阶段。原初反应包括光能的吸收、传递和电荷的分离;同化力形成是原初反应所引起的电荷分离,通过一系列电子传递和反应转变成生物代谢中的高能物质腺苷三磷酸(ATP)和还原辅酶Ⅱ(NADPH);碳同化是以同化力(ATP和NADPH)固定和还原CO2形成有机物质。

  电子链:光合作用中的电子传递链光合作用中,受光激发推动的电子从H2O到辅酶Ⅱ(NADP+)的传递过程。光合色素吸收光能后,把能量聚集到反应中心——一种特殊状态的叶绿素a分子,引起电荷分离和光化学反应。一方面将水氧化,放出氧气;另一方面把电子传递给辅酶Ⅱ(NADP+),将它还原成NADPH,其间经过一系列中间(电子)载体(也称递体)。
  绿色植物中,光合电子传递由两个光反应系统相互配合来完成。一个是吸收远红光的特殊叶绿素a分子,最大吸收峰在700纳米处,称为P700。由P700和其他辅助复合物组成的光反应系统,称光系统 I(PSI)。另一个是吸收红光的特殊叶绿素a分子,其吸收峰在680纳米处,称为P680。由P680和其他辅助复合物组成的光反应系统,称光系统Ⅱ(PSII)

  关于光合电子传递途径,比较普遍认为光合电子传递链是由PSⅡ和PSI以及连接两个光系统的一系列电子载体组成,电子传递链上各个载体按其氧化还原电位高低,成Z形串联排列。


植物光合作用的过程 光合作用的化学方程式

植物光合作用的过程 光合作用的化学方程式51 / 作者:伤我心太深 / 帖子ID:22135



  近年来,空气里面二氧化碳不断增加,产生温室效应。光合作用能否优化空气成分,延缓地球变暖,也很值得探索。光合作用研究,还可以为仿真模拟、生物电子器件、研制生物芯片等提供理论基础或有效途径,对开辟21世纪新兴产业产生广泛而深远的影响。正是这些,使得光合作用研究在国际上成为一大热点难点。早在一个多世纪以前,科学家就已经知道了光合作用,但真正开始研究光合作用还是在量子力学建立之后,人们也越来越为它复杂的机制深深叹服。

  现在,科学家们已经知道,光合作用的吸能、传能和转化均是在具有一定分子排列及空间构象、镶嵌在光合膜中的捕光及反应中心色素蛋白复合体和有关的电子载体中进行的。但是让科学家们觉得不可思议的是,从光能吸收到原初电荷分离涉及的时间尺度仅仅为10-15~10-17秒。这么短的时间内却包含着一系列涉及光子、激子、电子、离子等传递和转化的复杂物理和化学过程。更让人惊奇的是,这种传递与转化不仅神速,而且高效。在光合膜系统中,在最适宜的条件下,传能的效率可高达94%~98%,在反应中心,只要光子能传到其中,能量转化的量子效率几乎为100%。这种高效机制是当今科学技术远远不能企及的。

  那么,光合系统这个高效传能和转能超快过程到底是如何进行的?其全部的分子机理及其调控原理究竟是怎样的?为什么这么高效?这些都是多年来一直困扰着众多科学家的谜团。有科学家说:要彻底揭开这一谜团,在很大程度上依赖于合适的、高度纯化和稳定的捕应中心复合物的获得,以及当代各种十分复杂的超快手段和物理及化学技术的应用与理论分析。事实上,当代所有的物理、化学最先进设备与技术都可以用到光合作用研究中。

  光合作用的另外一个谜团是:生化反应起源是自然界最重大的事件之一,光合作用的过程是一系列非常复杂的独立代谢反应,它究竟是如何演化而来?

  美国亚利桑那州立大学的生化学家罗伯特教授说:“我们知道这个反应演化来自细菌,大约在25亿年前,但光合作用发展史非常不好追踪。有多种光合微生物使用相同但又不太一样的反应。虽然有一些线索能把它们联系在一起,但还是不清楚它们之间的关系。”罗伯特教授等人还试图透过分析5种细菌的基因组来解决部分的问题。

  他们的研究结果显示,光合作用的演化并非是一条从简至繁的直线,而是不同的演化路线的合并,把独立演化的化学反应混合在一起,也许,他们的工作会给人类这样一些提示:人类也可能通过修补改造微生物产生新生化反应,甚至设计出物质的合成的反应。这样的工作对天文生物学家了解生命在外星的可能演化途径,也大有裨益。我国著名科学家匡廷云院士曾深有感触地说“要揭示光合作用的机理,就必须先搞清楚膜蛋白的分子排列、空间构象。这方面我们最新取得的原创性成果就是提取了膜蛋白,完成了LHC一Ⅱ三维结构的测定。由于分子膜蛋白是镶嵌在脂质双分子膜里面的,疏水性很强,因此难分离,难结晶。”

  现在,中国科学院植物所经过多年努力已经提取了这种膜蛋白,在膜蛋白研究上,我国已经可以与世界并驾齐驱。那么是否可能会有那么一天,人们可以模拟光合作用从工厂里直接获取食物,而不再一味依靠植物提供呢?科学家们认为,这在近期内不可能的,因为人类对光合作用的奥秘并不真正了解,还会很多问题需要进一步弄清楚,要实现人类的这一长远理想,可能还要付出更为艰辛的努力。

ico_lz  楼主| 发表于 2016-12-14 21:51:15 | 显示全部楼层
  探索和研究光合作用的卡尔文


  卡尔文(Melvin Calvin,1911~1995)是美国生物化学家。从1945年~1955年,他和本森(A.A.Benson)、巴沙姆(J.A.Basshau)等人合作,经过10年的艰苦努力,推论出在植物的光合作用过程中,二氧化碳形成糖(6-磷酸果糖)的步骤,明确了二氧化碳的同化途径。


  1961年,卡尔文因研究光合作用的重大成就而荣获该年度诺贝尔化学奖。1911年4月8日,卡尔文出生于美国明尼苏达州圣保罗的一个俄国移民家庭。当时,他的父亲在底特律的一家汽车厂做技术修理工,母亲在家种田。


  卡尔文从小就很勤奋,刚刚10岁就到一家食品店做了学徒工,后来他上了学。由于卡尔文平时学习非常努力,又善于思考,因此学习成绩一直名列前茅。
  到中学毕业时,他借助自己所获得的助学金进入密执安矿业技术学院,学习了化学专业,从此,他与化学打了一辈子的交道,并借助于这方面的才华,在前辈科学家的工作基础上,成功地敲开了人类认识光合作用原理的大门。


  1931年,卡尔文大学毕业,取得了理学学士学位。此后,他又在明尼苏达大学继续攻读化学专业,研究催化方面的问题。4年后,卡尔文又取得了化学博士学位。后来,依然在奖学金的资助下,卡尔文又来到英国的曼彻斯特,在维多利亚大学迈克尔·波拉尼(M·Polanyi)教授的指导下,研究学习了两年。在这一段学习生活中,卡尔文逐渐对研究光合作用产生了浓厚的兴趣。
  1937年,卡尔文接受了美国物理化学家刘易斯(G·N·Lewis)的邀请,回到美国,进入加利福尼亚大学的伯克利分校任教,并开始着手研究光合作用中的催化问题。可是,这项研究很快就被第二次世界大战的炮声打断了。

  在1937年以后的大约8年中,全世界都卷入了一次空前的战火——第二次世界大战。当二战的硝烟在珍珠港升起之后,卡尔文也不得不和美国其他许多科学界同行一样,终止或改变自己的科学研究工作,受命参加研究与战争有关的科学问题。


  例如,卡尔文在二战当中,曾经花了4年时间研究合成出一种含有钻的络合物,这种物质和血红蛋白一样能够在血液里运输氧,可以在医疗手术和抢救伤员时做血浆的代用品。他还试验成功了分离“铀”和“钚”以及提纯“钚”的办法,这一成果后来被美国原子能委员会用于研究和制造原子弹的“曼哈顿”打算。

  在近代“络合物化学”领域,卡尔文进行过一系列的研究,有非常重要的贡献。他在研究一种叫做“酞菁”的有机物时,发现这种物质在空间结构上与植物的叶绿素和动物血红素很相似。而酞菁的化学性质却比叶绿素和血红素都稳定得多。1952年,卡尔文出版了《金属络合物的化学》一书,这部书被誉为近代对络合物研究的权威性著作。


  卡尔文在生物学方面的一个重要贡献,是他提出了在光合作用过程中,二氧化碳转化为糖的途径。1945年,第二次世界大战结束后,卡尔文和他的合作者将主要精力用于研究光合作用。他们运用同位素示踪和纸层析分离等实验办法和技术,推论出了光合作用过程中,从二氧化碳到六碳糖的各主要反应步骤,并将这个发现总结为“光合碳循环”。后人为了纪念卡尔文这位伟大的发现者,也把光合碳循环称为“卡尔文循环”。


  事实上,对于植物光合作用的研究,早在17世纪初就开始了。当时,有一位名叫赫尔蒙特的比利时大夫就做过如此一个有趣的试验。他把非常容易生根成活的一段柳树枝条种植在一个大瓦盆里。
  在种植之前,他称量了柳树枝条的质量(2.27kg)和瓦盆中干燥沙土的质量(90.8kg)。此后,只向盆中浇雨水,不再添加其他东西。5年以后,当赫尔蒙特再次进行称量时,柳枝枝条已经长成重达76.86kg的柳树,而瓦盆中干燥沙土的质量仅仅减少了千分之一左右。


  柳树增加的质量远远大于土壤减少的质量。因此,依据这个试验,赫尔蒙特认为,使柳树生长并增加质量的物质,主要来源于雨水,而不是土壤,这个结论在今天看来尽管并不非常科学和严谨,可是,它开创了人们使用定量的办法来研究生物学的先例,是对生物学研究的一个重要贡献。另外,还有几位学者也从事过这方面的研究。例如,1727年,英国牧师黑尔斯在他的著作《植物静力学》中就曾经提出了与赫尔蒙特不同的观点。黑尔斯在这部书中说,植物体在生活过程中所形成并积累的固体物质,是植物叶子从空气中所吸收的养分变化而来的。
  以后,又过了40多年,另一位英国牧师、化学家普利斯特里在1771年为了验证自己提出的在自然界中有“好空气”和“坏空气”之说,也做了一个有趣的试验。普利斯特里同时将两只老鼠分别放在两个密封的钟罩内,其中一个钟罩里还放进了一株生长旺盛的植物。


  不久,没有植物陪伴的老鼠渐渐减少了活动,很快就死去了;而在放有绿色植物的另一个钟罩内,老鼠还是可以进行正常的活动,而且持续生活了好几天。普利斯特里还把燃烧着的蜡烛与旺盛生长的薄荷放在一起,蜡烛竟然也久久没有熄灭。
  依据这些试验,普利斯特里得出了植物能够把坏空气变成好空气的结论,而动物的呼吸和蜡烛的燃烧则将好空气变成坏空气。后来,普利斯特里写了一本书,名字就叫《各种气体的实验和观察》。科学应当能够经受得住时间和实践的检验。


  当别人按照这本书中所提供的办法去重复普利斯特里所得出的实验结论时,有些时候看到的结果却恰恰相反:是绿色植物的生命活动才把好空气变成坏空气的。这种奇怪的现象,又将一位荷兰大夫英格豪斯的注意力吸引到这个研究领域中来。1779年夏天,英格豪斯来到英国伦敦,也开始进行这方面的研究。他用漏斗把新鲜水草扣在装满水的大烧杯里,再用装满水的试管罩在漏斗颈部一端的开口上,接着给水草光照,并用试管收集水草接受光照后所产生的气体。一段时间以后,水草在光照下产生的小气泡在倒扣的试管底部越聚越多。

  英格豪斯慢慢地将试管从水中取出,再把点燃的蜡烛逐渐靠近试管口,只听“砰”的一声,蜡烛的火焰窜起老高。这个结果用当时人们已经掌握的化学知识,可以解释为是氧气的助燃现象。英格豪斯同时还做了不给水草照光的对比试验,结果很长时间以后也没有看到小气泡产生出来。


  为了让试验的结果更加可靠,英格豪斯并不忙于下最后的结论。他又用了将近3个月的时间,选择不同的植物反复进行了总计500多次实验,终于找到了好空气与坏空气互变的关键缘由是“光”。英格豪斯所得出的结论是:在光照下,植物会把坏空气变成好空气,没有光的时候则相反。


  此后,在1782年,瑞士牧师塞尼比尔(Jean Senebier)用化学分析证明,绿色植物能吸收老鼠呼吸产生的“坏空气”(二氧化碳),同时向老鼠提供“好空气”(氧气);
  1804年,瑞士化学家索绪尔(Nicholes·Th·de·Saussare)又发现了植物在光照下吸收二氧化碳与产生氧气的数量差异,进一步推论出水参与了光照下植物积累有机物的生命活动,水分和二氧化碳都是光合作用的原料。

  1864年,萨克斯发现了光合作用的产物中有淀粉。直到1897年,科学家们才归纳出了光合作用的反应式:二氧化碳+水+光氧+有机物+化学能1897年,在人类开始探索植物生命活动原理的一百多年以后,一位名叫佩弗的法国科学家,为植物体在光照下的这种重要的合成代谢起了一个贴切而又响亮的名字——“光合作用”。在人类探索植物光合作用的漫漫历史长河中,还有一位科学家我们不应当忘记,他确是英国剑桥大学的植物生理学家希尔(R·Hill)。


  是他在1939年用实验证明了植物细胞中的叶绿体在吸收光能以后,可以从水分子中释放出氧气。这个结论后来还在1951~1955年间,在美国和波兰等不同的国家被科学工作者多次验证过。通过以上这些科学家们的共同努力,到20世纪中叶,人类关于植物光合作用的认识,已经从宏观向微观前进了一大步。
  有关这方面的研究,也从细胞水平转入了更接近于生命物质运动本质的大分子水平。地球上的生命现象,说到底确是一种物质运动形式,而光合作用则是生命这种物质运动形式的重要基础。

  没有植物的光合作用,地球上的生命将失去获得光能来推动生命物质运动的能量来源。因此,探索和揭开光合作用的奥秘,是人类探索大自然奥秘的一个里程碑,也将有益于我们更科学地认识人类与环境之间的关系,尤其是认识植物在自然界中的重要地位和作用。

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

UFO中文网

GMT+8, 2024-11-26 00:45

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表