UFO中文网

 找回密码
 注册会员
查看: 391|回复: 0
收起左侧

“钱包悖论”是什么,概率学说赌博对双方都有利

[复制链接]
online_member 发表于 2019-9-18 23:14:58 | 显示全部楼层 |阅读模式
  概率论中的钱包悖论 赌博会对双方都有利吗,说到悖论大家都不陌生,大家所熟悉的有费米悖论、上帝悖论等等,都比较有趣揭示了很多道理,今天小编为大家介绍另外一种悖论-钱包悖论,一起来看看吧。




  “钱包悖论”是什么,概率学说赌博对双方都有利851 / 作者:明明是我 / 帖子ID:53945





  钱包悖论


  所谓钱包悖论指的是钱包游戏,是概率论中的一个悖论,起源于1953年,是比利时数学家Maurice Kraitchik提出的谜题。




  “钱包悖论”是什么,概率学说赌博对双方都有利770 / 作者:明明是我 / 帖子ID:53945






  在赌博中比较常见,假如如果赢的话、会赢得比输得更多,比如你去玩吃角子老虎机时认为就算只中樱桃,也是翻五倍!但问题在于不一定会中奖。




  起源




  数学家莫里斯克莱特契克在他的《数学消遣》书中,赌注是领带而不是钱,两个人都声称自己的领带更好,所以他们找来了第三个人来做裁判,看看判决哪一个的更好。胜利的人需要把自己的领带送给失败者作为安慰。




  “钱包悖论”是什么,概率学说赌博对双方都有利102 / 作者:明明是我 / 帖子ID:53945






  两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?




  分析




  克莱特契克的分析




  克莱特契克在他的书中指明必须限制条件,这才是一场公平的游戏,例如A,B二人对对方穿领带的习惯一无所知等。




  “钱包悖论”是什么,概率学说赌博对双方都有利708 / 作者:明明是我 / 帖子ID:53945






  他还假定每一个比赛者带有从0到任意数量(比如说一百元)的钱。以此假定构成两人钱数的矩阵,就可看出这个此赛是对称的,不会偏向任何一方。




  但他没有指出两个比赛者的想法错在哪里。




  考虑胜算




  其实问题就在A,B二人只以可以赢更多的钱这点,就做出这场赌博对自己有利的结论,当然是错误的。显然是缺乏思考,对客观事物的复杂程度缺乏认识,才会做出如此乐观的结论。




  这场赌博对谁有利的考虑谁可以赢得这场赌博。而不是以可以赢更多的钱来判断。




  “钱包悖论”是什么,概率学说赌博对双方都有利298 / 作者:明明是我 / 帖子ID:53945






  若以谁有胜算来判断,必须注意二点:




  必须计算期望值。 钱包里有多少钱是很随机的。无法有一定的标准。难以论定这场赌博的胜负,但若将所有人类的钱包里的钱相加后除以全人类数目,还是可以得出一个平均值。 若钱包里的钱比平均值小,那胜算比较大,反之较小。各国家,各地区人的钱包里的平均值都不一样,全人类太广泛,以国家,地区来分更加有胜算。




  但就算是费很大力气来得到这平均值,还是很难确定有胜算的。由此可见A,B二人认为这场赌博对自己有利的结论是做得多么轻易,缺乏思考。




  其实最有胜算的方法是知道对方的钱包里有多少钱。




  “钱包悖论”是什么,概率学说赌博对双方都有利66 / 作者:明明是我 / 帖子ID:53945






  另一种分析




  钱包只有二个,所以钱包里的钱只存在二个数:




  X,Y,设XY。




  A有1/2机会是X,1/2机会是Y;B也如是。




  如果A的钱是Y,则赢得X;如果A的钱是X,则输掉X;B也如是。




  结论:1/2机会赢,1/2机会输。




  而A,B想法的问题出在,他们假设了3个数:




  设A有X元,B有Y元,(YX)。




  但实际上只存在2个数,所以这是错误的论证,推理出错误的结论。




  结语:看完了这个有趣的钱包悖论,大家是不是有种恍然大悟的感觉,但是在最后小编提醒一句赌博不利于身心健康甚至会家破人亡,所以不要沾染为好。


您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

UFO中文网

GMT+8, 2024-11-24 17:55

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表