2017年4月12日,巴黎 LABORES 自然和数字科学科研实验室(LABORES Scientific Research Lab for the Natural and Digital Sciences)的自然算法组于 PLoS Computational Biology 发表论文,这些研究者希望阐明这种复杂性如何在人类身上体现。这篇论文的作者之一、计算机科学家 Hector Zenil 说:“研究人员发现,当老鼠试图表现随机行为时(2014年论文),它们在计算如何行动。这种计算就是我们这项研究想要探索的。”Zenil 的团队发现,平均来说,人类产生随机行为的能力巅峰在25岁,之后会一直缓慢递减直到60岁,开始迅速下滑。
这些结果可能会拓宽对大脑运作机制的研究思路:大脑可能是一个算法概率预测器(algorithmic probability estimator)。一些流行理论中存在的决策统计模型偏差,将会为这一新理论所更新乃至推翻。其中一种著名的理论是贝叶斯脑假说,该理论认为,大脑会为每种想法分配一个概率,每当感官收到新的信息时,就对这一概率进行修改。“大脑是高度算法的,” Zenil 说。“它的行为不随机,不像投掷硬币的机制。”他补充说,如果仅利用统计方法而忽略算法方法,我们对大脑的理解会很片面。举例来说,统计方法不能解释为什么我们可以记住电话号码等数字序列,就像“246-810-1214”,这只是一串数字,毫无统计意义,但它有算法意义。我们可以识别其模式并以此记住这组数字。