把甜甜圈变形成茶杯在拓扑学中,我们想对所有流形进行分类,其中在某个类中的所有流形都是彼此同胚的。在二维空间中,很容易看出,如果流形是封闭的且没有洞,那么它就相当于一个2维球体(圆面)。很容易确定一个2维流形是否同胚于2维球体。
庞加莱指出,这在三维中也是成立的,即任何封闭的,单连通的3维流形都同胚于3维球面。
2002年,格里戈里·佩雷尔曼通过使用“里奇流”证明了庞加莱猜想。 P vs NP问题可以分为不同的复杂性类别。这里我们感兴趣的是P和NP类。它们分别表示多项式时间和非确定性多项式时间。
本质上,P问题可以“快速”解决和“快速”验证。而NP问题(目前)并没有一个“快速”的解决方案。更具体地说,给定一个输入大小为n的问题,如果它属于P类,那么求解它所花费的时间根据某个多项式增加。然而如果它是NP,那么它就会增加得更快。
一个被认为是NP的例子是旅行推销员问题的(决策问题):
解决这个问题很困难,也很费力。如果增加城市的数量,将使求解时间的增加比任何多项式都要快得多。
另一方面,一个P问题的例子是验证一个数字是否在给定的列表中。这很容易解决,也很容易检查,如果你将列表的大小翻倍,所花费的时间也会翻倍(所以所花费的时间不会增长得太快)。
P vs NP问题问的是,是否NP问题和P问题是不同的。否则,是否存在一些秘密或隐藏的算法可以快速解决以前认为困难的问题(NP问题)? 纳维尔-斯托克斯问题,存在性和平滑性改变世界的方程之纳维尔-斯托克斯方程,堪称最难的物理学方程
在三维空间和时间中,给定初始速度,是否存在一个光滑且具有全局定义的矢量速度和标量压力场来求解纳维尔-斯托克斯方程(Navier–Stokes equations)?
纳维尔-斯托克斯方程是描述三维流体运动的两个非线性偏微分方程。它是两个方程的集合,将速度矢量场和它的变化率与压力场联系起来,也就是作用于液体的外力。方程式是这样写的: