相对于太阳来说,地球是由「废料」和「边角料」组成的。
其实在 46 亿年前的时候,太阳形成之初,除了太阳自己要用到的原料之外,还有大量的气体和尘埃围绕着这颗「婴儿恒星」旋转。
这些物质在引力的作用下慢慢地聚集到一起,形成了更大的物体,叫作「星子」——这是用来组成一颗行星的「积木」,每一个的直径约一千米。
在 45.6 亿年前,也就是太阳形成之后的几亿年,这些星子撞到一起形成了地球的雏形。
星子不断地聚集,加上放射性衰变释放的能量,使得这个新行星一直保持熔融状态。
在引力的作用下,地球逐渐变成球形。
图 2-3 早期的地球完全处于熔融状态,使得像铁这样较重的物质沉入核心处
由于地球处于熔融状态,最重的那些物质下沉至中心部位,而最轻的那些物质自然就浮到最外层,这一过程被称为「分化」。
分化完成的地球在冷却后形成了一个密实的铁–镍核心,外面包有一层固态的壳。
现在,我们的地球仍然有一个铁–镍核心,我们可以把它分成两部分——内核和外核。
内核是固态的,外核在外层物质的巨大作用力下则仍处于熔融状态。
内核和外核交界处的温度可达 6 000 摄氏度,这和太阳表面差不多热。
内核和外核加起来的大小占到地球大小的 55%,外面包围着一层由半融化状态的岩石(也就是岩浆)所组成的地幔。
地幔的外面是地壳,也就是我们居住的地球表面。
地壳最厚处只有 60 千米,还不到地球直径的 0.5%,如果把地球缩小到一个苹果的大小,那么地壳差不多只有苹果皮那么厚。
海洋和大气
水资源丰富是我们的地球最为显著的特征,液态水覆盖了地球表面超过 70% 的面积,地球上的每一个生物,从最小的细菌到最大的蓝鲸,离开水都无法生存。
但是在地球形成时那样地狱般的高温之下,任何液态水都无法存在,所以这些水很可能是形成之后被添加进来的,但是它们是从哪来的呢?
水可能产生于地壳之下的地幔深处,液态氢和石英发生反应会生成液态水,然后这些水又藏进岩石中。
2014 年,人们在地表之下 700 千米处发现了一个比地球表面的海水总量还要多两倍的巨大水库。
随着时间的推移,水蒸气可能会从地壳的裂缝中渗出,然后当行星冷却时,水蒸气会凝结成液态,变成雨水填满低洼的盆地。
另外一种可能是,这些液态水来自外太空——是小行星和彗星撞击地球时带来的。
但是这个说法有一些问题,对彗星的分析结果显示,其中包含的一些水的种类与我们在地球上的海洋中发现的不同。
另外,如果水是被小行星带来的,那么地球大气中氙的含量应该比现在多得多,所以这种说法正确与否仍有待考证。
关于地球大气的起源,我们已经了解得比较清楚了,不过它现在的成分与其产生时区别很大。
在新生的地球上附着着的气体是由地球深处的火山活动中释放出来的,其主要成分是二氧化碳,除此之外还有一氧化碳、硫化氢和甲烷,但是没有氧气,氧元素被固定在各种化合物中,比如水(H2O),以及岩石这样的硅化物,如二氧化硅(SiO2)。
不过,在大约 30 亿年前一种叫作蓝藻的微生物开始在海洋中繁衍的时候,一切都变了。
它们通过光合作用,将二氧化碳、水和阳光放在一起合成了氧气。
大气中氧气的积累引发了地球历史上最大规模的物种灭绝之一,因为氧气对当时绝大多数生命形式都是有毒的,只有能适应大气成分的巨大变化的有机体才能存活下来,人类就是这些幸存者的后代。
现在,氧气是大气中第二多的成分(约 21%),仅次于氮气(约 78%)。
大陆板块
位于青藏高原和印度次大陆交界处的喜马拉雅山脉是地球上最为壮丽的自然景观之一,每年都有成千上万的人来到这里参观巍峨的珠穆朗玛峰,并且其中还有成百上千的人会试着攀登这座世界上最高的山峰。
喜马拉雅山脉形成于 5 000 万年前,尽管这是一段很长的时间了,但对地球来说它还很年轻。
喜马拉雅山脉位于印度境内的那一片大陆经历了一场极为艰难的迁移才最终到达了现在我们所见到的位置。
它从一个叫作冈瓦纳的古老大陆上分离出来,然后朝向非洲大陆旁的马达加斯加岛进发,之后又接着前往亚洲。
它以每年 20 厘米的速度奔向地球上最大的大陆,并「撞」出了世界上最高的山脉。
这种大规模的板块漂移形成的原因在于,地壳实际上是由一系列漂浮在液态熔岩上的构造板块组成的。
汹涌的暗流使得印度板块与冈瓦纳古陆分离开来,并向北前进。
在与欧亚板块发生碰撞之后,印度板块从底部将其向上推,于是形成了喜马拉雅山脉。
这一过程还远远没有结束,碰撞仅仅让印度板块前进的速度减缓下来,它仍在继续向北运动,这使得喜马拉雅山脉仍然每年都会「长高」2 厘米。
不过,大陆板块不只在地质学上有重大意义,许多科学家还认为它们在地球生命的发展中发挥了关键作用——毕竟,地球不仅是太阳系中唯一拥有生命的行星,也是太阳系中唯一拥有大陆板块的行星。
板块的边界通常会产生一些火山,这令困在行星表面之下的气体得以逃逸到大气中——尤其是二氧化碳。
而在冰期,过量的二氧化碳对于温度的升高能起到很大作用;此外,板块运动也会消耗多余的二氧化碳,防止地球过热。
因此,在寻找宇宙中其他星球上的生命时,天文学家不仅热衷于寻找与地球温度相同的行星,还倾向于寻找那些有大陆板块的行星,因为它们可以将温度保持在有利于生物繁衍的范围内。
阿尔弗雷德·魏格纳(1880—1930)
仔细地看看世界地图,你会发现它就像一块巨大的拼图,南美洲的东北角正好能嵌入非洲西南部的凹陷中,德国的物理学家阿尔弗雷德·魏格纳(Alfred Wegener)在 1911 年注意到了这一点。
他认为这不是一个巧合,并依此提出了「大陆漂移说」,其中提到南美洲大陆和非洲大陆原本应该贴合在一起。
但在当时几乎没有人相信这一说法,其他科学家认为如此巨大的一块土地根本不可能发生移动,而且魏格纳自己也无法解释移动的原因。
直到 20 世纪五六十年代——此时魏格纳早已在一次前往格陵兰岛的考察中去世——人们才找到支撑这一学说的证据。
科学家发现随着火山不断活动,会有新的大洋地壳形成,于是海底就会随之不断扩张。
很快,人们在魏格纳提出的大陆漂移说,以及进一步发展得出的海底扩张说的基础上,提出了板块构造说。
潮汐
在缅因湾的东北部,这段北美洲与大西洋波涛起伏的海岸线上,有一个独特的湾口,叫作芬迪湾,每天都会有超过 1 000 亿吨的水涌入这里再流出,这比地球上所有淡水河流量的总和还要多。
造成如此巨量的水来回往复、奔流不息的原因是什么呢?是引力,尤其是来自月球的引力(太阳也提供了一部分),这引发了每天巨大的潮起潮落。
其实地球上的岩石也会被引力牵动,但是水是液体,可以更自由地流动。
芬迪湾是世界上规模最大的潮水之一,那里的潮差可达 3.5~16 米,也就是说涨潮时潮水高度能超过一栋 4 层高的房子。
让我们来简单地认识一下潮汐的原理。
当你所处的这一片地区朝向月球的时候,引力会将你附近的水拉向月球,于是当你所在地处于高潮的时候,在月球与你的连线相垂直的那些地区就经历着低潮。
另外,月球对你另一侧的引力没有这么大,因为那里离得更远,但是这里也会经历一次高潮,其原因是地球旋转时的离心力——也就是汽车急转弯时把你甩向一边的那种力。
这就是地球上的大多数地区每天会经历两次涨潮和两次退潮的原因——地球的自转使得我们周期性地在 24 个小时内穿过这 4 片区域。
图 2-4 月球的引力使得地球上离它最近的地方发生涨潮
我们可以思考一下现实中见到的情况。
当你在海岸边看到潮水退去,你可能会觉得海水奔向远方,但事实并非如此。
无论是因为引力的影响还是离心力的影响,水总是保持原样的,反而是你在不断地移动——你跟着地球的自转一起从潮涨潮落中穿行而过,不是海水在远离你,而是你在远离它。
季节
季节的变化是我们地球上最美丽的特征之一。
春天,鲜花朝着天空绽放笑容;秋天,叶子又从空中萧萧落下。
很多人都误以为全年气温的变化源于地球和太阳之间距离的变化——离得近的时候是夏天,离得远了就是冬天。
实际上,季节变化是地轴的倾斜造成的。
我们的地球并不是直立的,而是与竖直方向有 23.4° 的夹角。
这意味着在 6 月份,北半球会朝向太阳,住在这里的人们就会经历更温暖的天气和更长的白昼,而北极圈里的人则会经历极昼——这里一整天都被阳光照射,没有黑夜。
与此同时,南半球背对着太阳,因此很难获取来自太阳的光线和热量——于是冬天就来了。
与北极的极昼相似,南极在此时进入了极夜。
6 个月后,地球运行到太阳的另一边,情况倒转过来。
赤道以南的人们吃起了烧烤,而赤道以北的人们则穿上了毛衣。
北极被阴影覆盖,同时南极被逐渐照亮。
一年中白昼最长和最短的那两天(分别在 6 月和 12 月)被称作「二至日」。
这两天之间,在地球绕着太阳运行到某一点时,两个半球都没有斜向太阳,这就是我们所说的「昼夜平分点」。
地球运行到这里时(分别在 3 月和 9 月),全球各地昼夜等长。
图 2-5 地轴的倾斜使得我们有时会朝向太阳,有时则不会,而这导致了季节的变化
我们应当庆幸,地球倾斜的角度还是相当小的,如果倾斜得多,那么季节的变化将会更为剧烈,更难应对。
月亮确保了地球倾斜角度的稳定,也使得季节的变化可以被预测。
然而,火星就没有像月球这么大的卫星能够使其自转轴维持稳定,它会在其他行星的引力作用下发生剧烈的摇摆,这导致火星的严冬和盛夏的长度处于不断的变化中。
磁场
雌性海龟总是会踏上令人惊奇的旅程。
它们在海滩上出生后,匆匆忙忙地奔向大海,为了寻找丰富的觅食地而迁徙 2 000 多千米。
但是一旦成年后,它们就会再回到孵化时的那片海滩。
它们怎么能记得住自己来自何方呢?答案似乎与地球的磁场有关。
随着地球的自转,地心深处的液态铁在外核中晃动,地球磁场即产生于此。
磁场线从地球的一端钻出来,并绕到另一端又钻进去。
不过,涉及极点这个问题,问题就会变得很复杂。
地球有三个北极和三个南极。
首先是地理北极,这是地球物理意义上的顶点,位于假想的地轴上。
这个点几乎不会发生变动,一年中只会在很小的范围内移动几米。
使用 App 查看完整内容目前,该付费内容的完整版仅支持在 App 中查看
App 内查看 |