加拿大和德国科学家使用一种掺杂稀土离子并冷冻至华氏-454度(约-270℃)的铌酸锂晶体,成功实现了存储和再现纠缠态光量子。换句话说,他们已经制造出了一种量子记忆体。 量子通信具有远远超过传统光纤网络的优势,但操作电子或光子使其保持固有方式的不易,让量子网络在很长时间内只是一种“理论上的”追求。具有 量子纠缠现象的光量子之间,即使在相当遥远的距离下仍保持有特别的关联性,亦即当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。确认光量子的关联性并非易事,因为两个粒子间的纠缠态链接非常脆弱 - 影响因素有很多,链接也很容易被弄乱。 与光纤网络类似,通过纠缠态粒子在量子网络上传输的信息需要“住”的地方以进行复杂计算或构建高尖端网络,就像电脑内存一样。这种超低温晶体所具有的存储和再现光量子的材料特性,很像计算机中字节的保存和调用。和我们传统的电脑及网络功能的复杂性相比,这种存储和再现单个光量子的能力看上去还相当简陋。但这确实是实现不会泄密的通信系统以及建造超高速高能量子计算机之路上的首个巨大进步。 位于瑞士日内瓦大学的另一个独立研究小组也报告了类似的研究成果,他们使用的是另一种不同的晶体,证明这种利用晶体材料特性传输光量子纠缠态的理论确实有广泛的实际研究价值。
———— 这是华丽丽的分界线 ————
升级量子记忆体?怎么少得了晶体
克莱·迪洛
量子晶体 一种掺杂稀土离子的晶体,能存储和再现纠缠态光量子,从而创造出真正意义上的量子记忆装置。 沃尔夫冈·蒂特尔/卡尔加里大学
量子通信具有远远超过传统光纤网络的优势,但操作电子或光子使其保持固有方式的不易,让量子网络在很长时间内只是一种“理论上的”追求。但卡尔加里大学的研究者和他们在帕德博恩大学的德国同事已经把量子网络向成为现实推近了一大步,他们证明特殊的掺杂晶体能存储和再现由纠缠态光量子编码的信息。换句话说,他们已经制造出了一种量子记忆体。
与光纤网络类似,通过纠缠态粒子在量子网络上传输的信息需要“住”的地方 - 与电脑内存相似 - 以进行复杂计算或构建高尖端网络。这并非易事,因为两个粒子间的纠缠态链接非常脆弱 - 影响因素有很多,链接也很容易被弄乱。你还不得不让光量子或电子保持静止,这又是另一个完全不同的难题。
不过研究人员使用一种掺杂稀土离子并冷冻至华氏-454度(约-270℃)的铌酸锂晶体一次性解决了所有问题。这种科学方法相当棘手(若你有兴趣,《新科学家》周刊对此有一篇优秀、简明的解释文章),但研究人员从本质上调整了这种晶体,使其刚好能生成光量子的纠缠态副本。那些具有量子纠缠态链接的光量子 - 测量其中之一产生的变化,另一个也会即刻发生相应的变化。
这种超低温晶体所具有的存储和再现光量子的材料特性,很像计算机中字节的保存和调用。和我们传统的电脑及网络功能的复杂性相比,这种存储和再现单个光量子的能力看上去还相当简陋。但这确实是实现不会泄密的通信系统以及建造超高速高能量子计算机之路上的首个巨大进步。
如果说这类概念的单方面证明似乎就和两个纠缠态光量子之间的联系一般脆弱,不妨多思考一下,位于瑞士日内瓦大学的一个独立研究小组也报告了类似的研究成果,他们使用的是另一种不同的晶体。Upgrading Your Quantum Memory? Don't Forget the Crystals
By Clay Dillow
Posted 01.13.2011 at 3:00 pm
The Quantum Crystal A crystal doped with rare earth ions can store and retrieve entangled photons, essentially creating a quantum memory device. Wolfgang Tittel/University of Calgary
Quantum communication offers myriad advantages over conventional fiber optic networking, but manipulating electrons or photons to behave in the proper fashion has long kept quantum networking a “theoretical” pursuit. But University of Calgary researchers working with German colleagues at the University of Paderborn have pushed quantum networks a big step closer to reality by demonstrating that specially doped crystals can store and retrieve information encoded in entangled photons. In other words, they’ve created a form of quantum memory.
Like fiber optic networks, information traveling through quantum networks via entangled particles needs somewhere to live – something akin to computer memory – in order for complex computations to take place or sophisticated networks to be created. This isn’t easy, as the entangled link between two particles is fragile – tamper with it too much, and the link can be fouled. You also have to make the photon or electron sit still, another problem entirely.
But the researchers were able to pull all these tricks off at once using a lithium niobate crystal doped with rare earth ions and chilled to -454 degrees. Here the science gets tricky (New Scientist has a great, concise explanation if you care for it), but essentially the researchers tuned this crystal just right to make it produce an entangled copy of a photon. Those photons, sharing their quantum link, can be separated and remain identical – a change in the measurement of one affects a change in the measurement of the other.
The material properties in these cooled crystals are such that the photons can be stored and retrieved, much as bytes on a computer are squirreled away for later recall. Compared to the complexity with which our conventional computers and networks function, the ability to store and retrieve a single photon might seem rudimentary. But it’s a big first step down a road that could produce unhackable communications schemes and superfast, energy efficient quantum computers.
And if that single proof of concept seems as fragile as the bond between two entangled photons, think again; a separate research team at the University of Geneva in Switzerland has reported similar results using a different kind of crystal.
|