1687 年, 牛顿出版了一部名为《自然哲学的数学原理》 (Mathematical Principles of Natural Philosophy) 的著作, 建立了以牛顿三大运动定律 (Newton's Three Laws of Motion) 为基础的动力学体系。 在这一动力学体系中, 与具体计算关系最为密切的 “第二运动定律” 可用现代符号表示为:
F = ma(2.1)
其中 m 是物体的质量, F 是作用在物体上的力, a 是物体的加速度[注一]。 这一定律引进了作为 (变速) 运动原因的力的概念, 并将之与运动的加速度定量地联系了起来。
与引进力的概念相匹配地, 《自然哲学的数学原理》一书的另一项重大成就是具体给出了一种力——而且是有着基础意义的力——的规律, 这种力就是万有引力, 这一规律被称为牛顿万有引力定律 (Newton's law of universal gravitation)。 牛顿万有引力定律给出了两个间距为 r, 质量分别为 M 和 m 的物体之间的引力 F, 其具体形式为[注二]:
这个牛顿万有引力定律与狭义相对论相互冲突的问题深深吸引了爱因斯坦的注意力。 1907 年, 他应德国《放射性与电子学年鉴》 (Jahrbuch der Radioaktivität und Elektronik) 期刊编辑斯塔克 (Johannes Stark) 的约稿撰写一篇题为 “关于相对性原理和由此得出的结论” (On the Relativity Principle and the Consequences Drawn From It) 的综述。 在那期间, 他忽然在思考这一问题上取得了后来被他称为 “一生中最快乐的思想” 的概念突破。
这一突破究竟是什么, 又是如何产生的呢? 1922 年 12 月 14 日, 爱因斯坦在日本京都大学的一次题为 “我是如何创立相对论的” (How I Created the Theory of Relativity) 的演讲中作了回顾:
在我们所采用的波速 c = 1 的单位制下, 推迟解与超前解的区别在于前者由 t — r 时刻的源决定 t 时刻与源相距 r 处的场, 而后者由 t + r 时刻的源决定 t 时刻与源相距 r 处的场。 从数学上讲两者都是波动方程的解——因波动方程是时间反演不变的, 但从物理上讲, 源是因场是果, 因果关系要求因早于果, 从而应该只用推迟解。 不过也有物理学家有不同看法或作过不同尝试, 比如惠勒和他的学生、 著名美国物理学家费曼 (Richard Feynman) 曾尝试用超前解处理电磁理论的某些基础问题, 丹麦物理学家莫勒 (Christian Møller) 则主张对引力波不能排除超前解。 不过这些尝试或主张都未得出有建设性的结果。
这一近似之所以被称为低速近似或非相对论近似, 是因为引力波的典型波长取决于源的运动。 具体地说, 若源的尺度为 R, 典型运动速度为 v, 则源的典型运动周期——同时也是其所发射的引力波的典型周期——为 T ~ R/v, 相应的引力波典型波长则为 λ = cT ~ Rc/v, 因此源的尺度远小于引力波的波长意味着 R ≪ λ ~ Rc/v, 即 v ≪ c, 这正是低速近似或非相对论近似。
一般情形下的远场近似要求场点离源的距离 r 不仅远大于引力波的波长 λ (即 r ≫ λ), 而且还远大于源的尺度 R (即 r ≫ R), 不过多极近似已假定了源的尺度远小于引力波的波长 (即 R ≪ λ), 因此后一条件 (即 r ≫ R) 是自动成立、 不言而喻的。