不幸中的万幸是,伽利略号上还有一个备用的低增益天线(Low-gain Antenna)。尽管它的传输带宽只有主天线的万分之一左右(8 to 16 bits per second),但人们这时也只能使用它进行数据传输了。不过,由于地面接收技术以及信息压缩技术的进步,最终这个带宽又被提高了到了主天线的百分之一左右(1,000 bits per second)。从1991年直到2003年伽利略号任务结束之时,人们都只能使用这个大打折扣的低增益天线进行数据传输,尽管NASA声称伽利略号最终依然完成了70%的科学任务。
探测器从处于P点的地球上发射后,经过一个椭圆形的轨道之后在A点与火星轨道相切。虽然绕着太阳转了半圈,但这却是从地球到火星最省力的路线,这条路线叫做霍曼转移轨道(Hohmann Transfer Orbit)。确定了轨道之后,下一步我们需要计算的就是什么时候从地球上发射探测器,可以让火星刚好和探测器同时到达A点以实现回合。在茫茫的宇宙空间中做到这一点就好比要算准时机,丢出一颗网球去击中正在空中飞行的另外一颗网球。计算出探测器从P点到达A点所需的时间,再减去火星在这段时间内走过的路程,就可以得到在发射探测器时火星应该所处的位置:
最后再补充一下,虽然霍曼转移是所需能量最小的方案,但并不代表这是唯一的方案。人们可以以多消耗能量为代价以其他轨道进行行星间的转移。例如下面这张维基百科图片就显示了三种不同的转移轨道。图中的(A)、(B)、(C)轨道代表的分别是(A)霍曼转移轨道(Hohmann Transfer Orbit)、(B)合点航行(Conjunction Mission)、(C)冲点航行(Opposition Mission)。
这里我们忽略了宇宙中的另外一种光。宇宙诞生于137亿年前的大爆炸。大爆炸辐射出强烈的能量,它的光应该弥漫整个宇宙空间,为什么看不见呢?原因是,经过100多亿年的空间膨胀,大爆炸的光已经红移成了微波。人类的肉眼看不见微波,但是如果我们用看得见微波的望远镜对着夜空扫描,就可以看到这一副惊人的图画: “WMAP image of the CMB anisotropy”。来自维基共享资源 - File:WMAP image of the CMB anisotropy.jpg根据公有领域授权