找回密码
 注册会员
查看: 6501|回复: 20

我们所认知的宇宙有没有可能本身就是一个黑洞?

[复制链接]
online_member 发表于 2018-6-13 12:10:11 | 显示全部楼层 |阅读模式
我们所认知的宇宙有没有可能本身就是一个黑洞?
online_member 发表于 2018-6-13 12:10:11 | 显示全部楼层
突然收到好多赞,决定好好更新下。
让我们先玩个头脑实验,一个物体可以储存的信息和物体的体积相关还是和面积相关?正常人的答案当然是和体积相关,因为信息储存在物体(例如内存条)的内部而不是表面。接下来我们不断的把存满苍老师爱情动作片的内存条堆在一起,他们容纳的总信息量随着体积的增加而上升。但是! 内存条不可能无限堆下去,当质量到达一定程度时,它会收缩成黑洞(感叹下物理学家的脑洞!)。那么此时这些内存条储存的动作片会消失吗,放心,答案是不会,根据热力学第二定律,信息/熵不会凭空消失,他会通过量子扰动把信息“存储”在黑洞的视界上(包裹着黑洞的视界球面,越过此界后,光不能逃逸)。当我们再往黑洞中丢入内存条的话,黑洞会吸收质量,同时视界面积也会增加(需要更大的面积储存新吸收的信息)。因此结论是,物体所能储存的最大信息,和面积而不是体积相关,这个最大信息容量,就是物体塌陷成黑洞后的视界面积,除以普朗克空间(根据不确定性原理,构成时空的最小单元)。所以,我们这个世界,到底是真实的四维时空,还只是编码在低维膜上的全息投影,还真不好说。至少,在高维度不能相容的量子力学和广义相对论,在低维膜上能完美的自洽。
暂时先更到这儿。


---------------------------------------------------
2013的一篇nature就提出,我们的三维空间宇宙可能只是四维黑洞的视界膜,膜的生长被三维宇宙内的生物当成了宇宙的膨胀。
12月还另有一篇nature文章指出一种假设,如果黑洞吸收的三维信息和熵能保留在二维视界上,那么低维的全息膜和高维世界完全等价。我们这个宇宙可能根本上是包裹着的全息膜的投影。现有的实验证据也暗示了这个理论的正确性

http://www.nature.com/news/simulations-back-up-theory-that-universe-is-a-hologram-1.14328

---------------------------------------------
上文的实验证据如下:最近检测引力波的几个小组发现宇宙中存在着背景引力波噪音,这个值的大小和全息膜理论预测的一致,比四维时空的要大。因为时空的最小“像素”是普朗克时空,低维膜上的“像素”,投影在高维时空,会变大。科学家们观测到我们宇宙的“像素”,比真实四维时空的“像素”要大得多。所以我们更有可能生活在“膜”上,而不是真实的四维时空中。
online_member 发表于 2018-6-13 12:10:11 | 显示全部楼层
【我们所处的宇宙本身是一个黑洞】这个说法有两种可能的含义:
1、我们的宇宙等价于更高维宇宙中某个黑洞的视界;
这个问题过于专业,交给更专业人士回答,本广相门外汉不碰
2、
【按照Einstein场方程的最简单的解-Schwarzschild度规:
我们所认知的宇宙有没有可能本身就是一个黑洞?128 / 作者:eMzRsGiW / 帖子ID:31063 用全宇宙的已知质量M来算,视界半径 我们所认知的宇宙有没有可能本身就是一个黑洞?673 / 作者:eMzRsGiW / 帖子ID:31063 竟然就是可观测宇宙的大小。我们应该已经在一个3+1维黑洞的视界内(见分割线后2)】
@Mandelbrot 提到的就是这个意思
这个说法,有很严重的错误:
1)、 Einstein场方程 我们所认知的宇宙有没有可能本身就是一个黑洞?628 / 作者:eMzRsGiW / 帖子ID:31063 中宇宙学常数 我们所认知的宇宙有没有可能本身就是一个黑洞?575 / 作者:eMzRsGiW / 帖子ID:31063 这一项一般因为太小是忽略的,但是这一项在尺度上比另外两项高2个次幂,大尺度上反而会成为主项,不可以忽略;
更精彩的是,如果把漏洞补全,这个说法竟然失去意义了:
2)、带宇宙学常数的球对称解——Schwarzschild solution in de Sitter space 如下:
我们所认知的宇宙有没有可能本身就是一个黑洞?509 / 作者:eMzRsGiW / 帖子ID:31063
考虑最简单的情况:假设这个宇宙只有宇宙学常数 我们所认知的宇宙有没有可能本身就是一个黑洞?184 / 作者:eMzRsGiW / 帖子ID:31063 而没有物质(即M=0),那么
我们所认知的宇宙有没有可能本身就是一个黑洞?897 / 作者:eMzRsGiW / 帖子ID:31063
尽管看上去跟Schwarzschild黑洞很像
具体表现在:1、静态 2、空间不均匀 3、有视界(只不过在外面)
但它其实跟哈勃膨胀的宇宙(同样假设没有物质)
我们所认知的宇宙有没有可能本身就是一个黑洞?154 / 作者:eMzRsGiW / 帖子ID:31063
上面这个就是Friedmann方程:1、空间均匀 2、随时间动态 3、没有能一眼看出的空间边界
竟然完全等价
没错,这两个怎么看都不像是同一个东西的“时空”其实描述同一个宇宙,它们之间只差一个4维坐标变换
我们所认知的宇宙有没有可能本身就是一个黑洞?356 / 作者:eMzRsGiW / 帖子ID:31063
推导过程可以像我一样随便找个学生的本科毕业论文:
www.ru.nl/publish/pages/760966/thesis_chris_ripken.pdf见2.1节2.15式
对于我们的宇宙这种有物质, 我们所认知的宇宙有没有可能本身就是一个黑洞?196 / 作者:eMzRsGiW / 帖子ID:31063 的情况,坐标变换的形式会有些不同,质量分布也需要跟着变,但两个看起来好像天壤之别的时空互相等价这个依然成立
既然两种描述等价,那为什么我们不用静态的、有视界的坐标系,而要用一个哈勃膨胀的坐标系来描述我们的宇宙呢?
因为好算……
对就是因为好算:
1、宇宙学观测发现物质(&暗物质)在“膨胀”的时空坐标系中是均匀分布的,即密度是一个常数 我们所认知的宇宙有没有可能本身就是一个黑洞?951 / 作者:eMzRsGiW / 帖子ID:31063 ,意味着在“膨胀”坐标系中的描述宇宙的演化相当简单
2、两个坐标系等价,那既然知道了“膨胀”坐标系中的密度 我们所认知的宇宙有没有可能本身就是一个黑洞?544 / 作者:eMzRsGiW / 帖子ID:31063 ,算出“静态有视界”坐标系里的密度分布,进而描述那个宇宙的演化当然也不是难事,对吧?
呵呵,谁爱算谁算,算不死你!
这就是我说【三维黑洞论】没有意义的原因:它不仅跟我们如今用哈勃膨胀所描述的宇宙完全等价,而且描述起来、计算起来还复杂得多……那还有什么讨论它的必要呢?
————————————————分割线—————————————————
1、话说很多中二少年可能会有一个共同的疑问:黑洞视界的内部是一个什么样的时空结构
把上面的做法反过来做一遍就好了:找到一个坐标变换(满足符号不变,即类时类空类光属性不变)使得新坐标下的度规对“空间”均匀,即黑洞内部的世界在新坐标系下,有着跟“膨胀宇宙”类似的演化规律,就能以人类可理解的方式描述这个时空“可以发生些什么”
如果想对应到外界,只需把坐标再逆变换回来即可
2、稍微解释一下,大家从小就知道黑洞是极其致密的天体,比如跟太阳质量相同的黑洞只有3km。这种半吊子科普其实是有害的。黑洞并不一定致密:Schwarzschild半径跟质量M成正比,自然半径却跟质量的1/3次方成正比,所以再稀薄的天体只要尺度够大、总质量上去了,史瓦西半径甚至会超过自然半径(临界约1.5亿个太阳质量)从而变成黑洞,这种黑洞就跟“致密”没有半毛钱关系了。如果大到宇宙这个尺度,即使这么空旷的质量分布,也能“形成黑洞”
online_member 发表于 2018-6-13 12:10:11 | 显示全部楼层
我们所在的宇宙空间实际上是一个黑洞的内部,这是黑洞宇宙模型(black hole cosmology)的观点。目前主流的宇宙学模型是大爆炸理论,此外还有很多非主流的宇宙学模型。黑洞宇宙模型就是其中之一。

1. 为什么宇宙在黑洞内部?

这个问题要从宇宙膨胀开始说起。

我们知道,宇宙在加速膨胀。这里膨胀的含义是,新的空间从每一处空间中产生。它导致的结果是,宇宙中的物体都在相互远离。然而,比较近的物体会被引力或电磁力拉在一起,距离不会增加(既然宇宙在膨胀,那么地球与太阳的距离会改变吗? - Mandelbrot 的回答)。空间膨胀的效果,只有在距离十分遥远的星系之间才能看出来。
我们所认知的宇宙有没有可能本身就是一个黑洞?850 / 作者:dreamxyp@56.com / 帖子ID:31063

在上面的例子中,由于空间膨胀,猫-老鼠之间的距离和猫-狗的距离都增加了,但是,猫-狗距离增加明显比猫-老鼠距离增加要大得多。由于空间膨胀的叠加效果,距离越远的物体,它们之间距离增加也越大。也就是说,距离我们越远的物体,远离我们的速度也就越快。由此我们不难想象,距离我们足够远的星系,远离我们的物体会达到光速。这个距离被称为哈勃半径(Hubble Radius)。而在哈勃半径以外的星系,远离我们的速度超过光速。

在黑洞宇宙模型中,哈勃半径也就是我们宇宙所在黑洞的史瓦西半径。

如果我们把一个物体压缩到史瓦西半径(的球体)以下,这个球体表面的逃逸速度就会达到光速。也就是说,这个球体就成为了一个黑洞。

史瓦西半径的计算公式十分简单:
我们所认知的宇宙有没有可能本身就是一个黑洞?578 / 作者:dreamxyp@56.com / 帖子ID:31063
其中G是万有引力常数,M是物体的质量,c是光速。

那么,如果我们把哈勃半径以内的所有物质压缩成一个黑洞,它的史瓦西半径会有多大呢?如果把已知的宇宙质量(由观测的宇宙密度计算)代入上面的公式,得到的史瓦西半径和哈勃半径十分接近。考虑到观测的精度和误差,可以认为这两个值是相等的。也就是说,我们所在的宇宙空间,已经是一个黑洞了。

宇宙的密度很低,相当于地球这么大体积内,平均只有一粒沙的质量(宇宙有多空旷? - Mandelbrot 的回答)。物质如此稀疏的宇宙空间能形成黑洞,可能对很多人来说很不可思议。黑洞的给人的印象是往往是密度很大——如果把太阳压缩成一个黑洞,它的史瓦西半径只有3公里,而地球黑洞的史瓦西半径还不到1厘米。

从上面的公式可以看到,史瓦西半径和质量成正比,而物体的半径和质量的立方根成正比(如果密度不变)。所以,当物体质量增加的时候,史瓦西半径比物体本身的半径增长的快。一个质量很大的物体,它的史瓦西半径会达到甚至超过物体自己的半径。

然而,多数宇宙学家并不认同这个证据。他们认为,史瓦西半径和哈勃半径十分接近,只是一个巧合。

2. 黑洞内的宇宙

对黑洞的传统认识是,当物体落入黑洞,就会继续向黑洞中心坠落,最后落进黑洞中心的奇点——一个密度无穷大,体积无穷小的点。

我们所认知的宇宙有没有可能本身就是一个黑洞?924 / 作者:dreamxyp@56.com / 帖子ID:31063

但是,这并不是唯一可能存在的黑洞结构。

黑洞强大的引力使得时空极度弯曲,造成了一个与外面隔离的封闭时空。在这样一个封闭的空间中,如果物质大致均匀分布,广义相对论允许它保持一个稳定的内部结构,而不至于坍塌成一个奇点。那么,在没有外部物质和能量影响的情况下,黑洞宇宙是一个静态宇宙。当黑洞宇宙吸入外部物质时,由于质量增加,它的体积也随之增加,从黑洞宇宙内部来看,表现为宇宙空间的膨胀。所以,在黑洞宇宙模型中,对宇宙膨胀的解释不需要暗能量的概念。

一个黑洞宇宙通常是从一个恒星级黑洞开始的。它的内部是一个奇点还是一个婴儿宇宙,对于外部观察者来说都是一样的。当它吸收外部宇宙(母宇宙)的物质和辐射后,就会慢慢长大。在一个星系中,恒星走到生命尽头时,会变成白矮星,中子星,或者黑洞。最终,它们汇聚在星系中心,形成超过10亿太阳质量的超级黑洞。而这种黑洞的内部,就是像我们的宇宙一样的另一个宇宙。

恒星级黑洞诞生于超新星爆炸,所以它的内部温度极高(高于中子星的温度),但是它并不向外辐射能量。当黑洞宇宙膨胀,由于能量分散,温度逐渐降低。当一个黑洞宇宙膨胀到我们的宇宙大小时,温度已经下降到3K。这就是我们观察到的微波背景辐射

黑洞宇宙的膨胀速度取决于吸入物质的数量。我们的宇宙边界膨胀速度达到光速,这意味着它需要每秒吸入10000个太阳质量的物质。

对于一些质量比较小的黑洞(如超新星爆炸留下的恒星级黑洞)来说,它们周围的时空曲率变化很大,物质在进入黑洞时会被撕裂成碎片。而质量很大的黑洞(如星系中心的超级黑洞)被称为“温柔的黑洞”,物质可以完好无损的穿过视界,进入黑洞——来到另一个宇宙。

3. 黑洞宇宙模型

黑洞宇宙模型是一个多层次的等级结构。我们的宇宙在一个更大的宇宙(母宇宙)中;母宇宙中的其他宇宙是我们宇宙的姐妹宇宙;我们宇宙中的黑洞(恒星级黑洞和超级黑洞)都包含子宇宙;同样,我们的姐妹宇宙中也有它们自己的子宇宙;而母宇宙外面是更大的祖母宇宙
我们所认知的宇宙有没有可能本身就是一个黑洞?32 / 作者:dreamxyp@56.com / 帖子ID:31063

这个模型一共有多少层取决于整个空间的大小。如果整个空间是无限大的,那么宇宙层次的数目也是无限的;反之,则是有限的。

在黑洞宇宙膨胀的过程中,可能和姐妹宇宙相遇,从而合并成更大的宇宙。

以上是对黑洞宇宙模型的简单介绍。它是和大爆炸理论不同的另一种宇宙学模型,对于天文观测中的很多现象,如空间膨胀,微波背景辐射,也有不一样的解释。这种理论目前被认为是一种”类宇宙学“(alternative cosmology),没有得到多数宇宙学家的认同。然而,从20世纪70年代到现在,仍然有部分宇宙学家在从事这个理论的研究。

参考资料
    Pathria, R. K. (1972). "The Universe as a Black Hole". Nature240 (5379): 298–299. Bibcode:1972Natur.240..298P. doi:10.1038/240298a0.Good, I. J. (July 1972). "Chinese universes". Physics Today25 (7): 15. Bibcode:1972PhT....25g..15G. doi:10.1063/1.3070923. T Zhang (2009) "A New Cosmological Model: Black Hole Universe", Progress in Physics (http://www.ptep-online.com/index_files/2009/PP-18-01.PDF)
online_member 发表于 2018-6-13 12:10:11 | 显示全部楼层
记得某期《环球科学》提到过,有一种宇宙模型的假设是我们的三维宇宙是一个四维黑洞的事件视界。
有空把文章补上。
——————————————————————————————————
文章来源是2014年第九期的《环球科学》(《科学美国人》中文版)
正文如下:
我们所认知的宇宙有没有可能本身就是一个黑洞?709 / 作者:璀璨星辰 / 帖子ID:31063

撰文
尼亚耶什·阿弗肖迪(加拿大滑铁卢大学物理学和天文学系的助理教授)
罗伯特·B·曼(滑铁卢大学物理学和天文学系的教授及前系主任,曾担任加拿大物理学家协会主席)
拉兹·帕哈桑(圆周理论物理研究所和滑铁卢大学的博士生)
翻译 易疏序(中科院高能物理研究所粒子天体物理专业博士生,研究方向为中子星计时探测引力波)
古希腊哲学家柏拉图在他的作品《洞穴寓言》(Allegory of the Cave)中,描述了这样一群囚徒:他们终生居住在一个黑暗洞穴中,脖子和脚被锁住,无法环顾四周,只能面向洞穴岩壁。在囚徒身后,有一堆篝火。在篝火与囚徒之间,有着形形色色的物体,火光将那些物体的影子投射到囚徒眼前的岩壁上。这些二维影子就是囚徒们所能看到的全部,他们认为这就是现实世界。但真实情况是,世界要比他们认为的二维世界多出一个维度,锁链让他们无法回头看到这个真实的世界。这个不为囚徒所知的额外维度,精彩而复杂,可以解释他们在岩壁上看到的一切。

柏拉图的这一寓言,可能说出了我们的真实处境。

我们也许正生活在一个巨大的宇宙洞穴中,这个洞穴在万物之初就出现了。按照标准说法,宇宙是由一个密度无限大的点经过大爆炸而产生的。但通过最近开展的一些计算工作,我们可能会将宇宙的诞生追溯到大爆炸之前的纪元里,那时的空间要比现在的宇宙空间多出一个维度。即将开展的一些天文观测,可能会找到这个“原初宇宙”( protouniverse)留下的一些蛛丝马迹。

以往的经验告诉我们,宇宙有3个空间维度和1个时间维度,我们将这种几何结构定义为“三维空间宇宙”。但在我们的新宇宙模型里,这个三维宇宙不过是一个四维宇宙的投影。明确来说,我们整个宇宙诞生于高维宇宙中的一次恒星塌缩。这次塌缩在四维宇宙中产生了一个四维黑洞;黑洞的三维表面,就是我们生活的宇宙。

我们干嘛要提出这样一个听起来很荒诞的理论?这有两个理由。第一,我们的理论并非异想天开,它有坚固的数学基础,从而可以正确描述时空。

过去几十年,物理学家发展出了完善的全息理论(theory of holography)。他们有一套数学工具,可以将某个维度上的物理过程,转而在另一个维度上描述。举例来说,二维空间中的流体动力学方程相对简单,研究人员就可以解出方程,并利用这些二维解来理解一些更复杂的系统,比如三维黑洞的动力学过程。在数学上来说,这两种描述是相通的——人们可以用流体来完美类比难以捉摸的黑洞。

全息理论的成功使很多科学家相信,它可能是一个深层次、根本性的理论,而不仅仅是一个数学变换那么简单。或许,不同维度之间的界限,并不像我们想象得那么难以逾越;或许,宇宙基本原理是存在于另一个维度中的,然后被转换到我们看到的这个三维世界中;或许,就像柏拉图寓言中的囚徒,日常经验欺骗了我们,让我们误以为世界是三维的,只有当我们把目光投向第四个维度时,一切才会豁然开朗。

四维宇宙假说值得关注的另一个原因是,通过严谨地研究四维宇宙,或许可以帮助我们了解宇宙的本质,回答宇宙起源之谜,比如创世的闪光——大爆炸之谜。现代宇宙学认为,在大爆炸之后,宇宙紧接着进入了空间极速膨胀的时期——暴胀(inflation),在此期间早期宇宙的体积增加了10^78倍以上。不过,暴胀学说仍没能回答,是什么导致了大爆炸。相比之下,四维宇宙模型回答了这个终极谜题:宇宙究竟从何而来?

已知与未知的宇宙

我们研究四维宇宙正是为了解决三维宇宙中存在的问题。现代宇宙学已经取得了巨大的成功,但成功的光环下,却隐藏着深刻而复杂的谜团。对这些谜团的求索,让研究人员想到了全息理论。

宇宙学家用几个简单的方程(其中最重要的几个是爱因斯坦写出来的)和5个独立参数,就能描述整个宇宙的历史——从今天一路回溯到大爆炸后的一刹那。这5个独立参数为:普通物质、暗物质和暗能量各自的相对能量密度(我们会在后面的内容中详细说明),以及早期宇宙量子涨落的幅度和功率谱。他们用一个标准的宇宙学模型——Λ 冷暗物质(lambda Cold Dark Matter,Λ-CDM)模型,描述了数百个甚至可能是数千个观测数据点,这些数据覆盖的空间尺度从百万光年到百亿光年,到达了可见宇宙的边缘位置。不过,观测上的成功并不代表我们对宇宙的研究大功告成了。研究人员推测的这一宇宙演化版本,仍然有很多令人感到棘手的漏洞。我们遇到了有关宇宙本质的最根本问题,而且到目前为止,我们仍无法对这些问题做出解答。

问题1:我们并不理解这5个参数

让我们来想想宇宙中物质和能量的密度吧。哪怕只是数十年以前,天文学家都还相信,普通物质(元素周期表里的那些物质)是宇宙质量能量的主要形式。后来的宇宙学观测彻底颠覆了这个观念(这也带来了3个诺贝尔奖)。我们现在知道,在宇宙全部能量密度中,普通物质只占5%,暗物质则占到了25%。暗物质是一种未知的物质形式,科学家通过引力作用推测出了它们的存在。宇宙中剩下的70%是暗能量,普通物质的引力作用理应让宇宙的膨胀减慢,而暗能量这种神秘的东西却加速了宇宙的膨胀。暗物质和暗能量是什么?它们为何能占据25%和70%的宇宙成分?这些问题我们不得而知。

如果我们能更好地理解大爆炸,也许就能知道这些问题的答案了。在一团由光和粒子组成的、温度高达10^27℃的等离子体中,时间和空间突然创生。很难想象,在那样一种极端情况下创生的宇宙,居然会演化成我们今天所看到的这种情形——温度几乎处处相同,在大尺度上具有平直的空间曲率(在这样的空间曲率下,三角形的内角和是180°)。

暴胀可能是让我们理解宇宙大尺度结构的最好假说了。暴胀能“拉直”宇宙,抹平时空的弯曲部分,让宇宙的温度变得均匀。就像宇宙放大镜一样,暴胀也把宇宙初期微小的能量密度量子涨落放大到宇宙学尺度。这些涨落最终变成大尺度结构的种子,也就是星系、恒星、行星和包括我们在内的生命的种子。

暴胀学说是一个被广泛接受的成功理论(见“大爆炸之前”)。数十年来,宇宙学家通过观测宇宙微波背景辐射(cosmic microwave background,CMB)来检验暴胀学说的各种预言。CMB记录了早期宇宙的密度扰动情况。欧洲空间局(European Space Agency)的普朗克卫星最近的观测结果,证实了我们的宇宙是平直(或者非常接近平直)而且均匀的(各向异性不超过六万分之一)——这两点都是暴胀学说的重要预言。此外,人们认为原初物质涨落是暴胀将量子涨落放大得来的,卫星观测到的原初物质的涨落功率谱和幅度,与理论预期符合得非常好。

问题二:我们并没有真正理解暴胀

我们可能会问:是什么驱动了暴胀的发生?如何提供这么大的能量?在我们的想象中,在大爆炸结束后极短的时间内,宇宙充满了能量,这些能量以一种假想粒子的形式存在,即“暴胀子”(inflaton)。最近,科学家在欧洲核子研究中心(CERN)的大型强子对撞机(LHC)上发现的希格斯粒子(Higgs particle),与“暴胀子”这一假想粒子有很多相似的性质,可能是“暴胀子”的候选者之一。“暴胀子”不仅能解释宇宙早期的加速膨胀,也能解释如今的宇宙结构,因为在早期宇宙中,  “暴胀子”场能量的微小量子涨落,是唯一能导致显著的能量密度差异的机制。

不过,“暴胀子”并不能解决我们的问题,它只是把问题又向前推进了一步。我们不知道“暴胀子”的性质,不知道它从何而来以及如何找到它,我们甚至不确定它是否真的存在。

此外,物理学家不知道暴胀是如何自然地停止的——这就是所谓的“优雅退场疑难”(graceful exit problem)。如果一种能量场驱动了宇宙以指数级膨胀,那么,是什么让这个能量场突然“关闭”?同时,在Λ-CDM模型中的5个宇宙学参数,其中一些参数必须被精确地调整到当前数值,否则我们观测到的宇宙会面目全非,但对于这5个参数的起源,我们也没有一个令人信服的解释。并且,对于暴胀发生之前的宇宙——宇宙诞生的最初万亿亿亿亿分之一秒(10-36秒)内,我们也没有一个确定的描述。

问题三:我们不理解大爆炸是如何开始的

宇宙学领域的最大挑战是,如何理解大爆炸本身的性质:在一个密度无穷大的点——奇点(singularity),一切时间、空间、物质突然剧烈地喷薄而出。奇点是一个令人难以理解的“怪物”,时间和空间蜷曲于其中,在那里根本无法分辨过去和未来,一切物理定律也都失效。奇点是一个没有秩序、没有规则的宇宙。从奇点中跳出任何东西,在逻辑上都是成立的。但从奇点中跳出来一个像我们看到的宇宙一样有秩序的宇宙,是不太可能发生的。

我们能够想象的情形是,从奇点中有可能跳出一个高度混乱的宇宙,那个宇宙的特点是,温度有剧烈的空间涨落,也就是说,在宇宙空间中,不同点的温度有着巨大的差异。而且,那个宇宙里的暴胀可能不能将这些涨落抹平。事实上,如果温度的涨落太大的话,暴胀可能都没有机会发生。因此,奇点的问题不能全靠暴胀来解决。

奇点虽然奇怪,但并非极其罕见,我们在另一个地方——黑洞的中心,也能瞥见其魅影。黑洞是巨星塌缩的遗骸。所有的恒星都是核聚变反应炉,在那里,轻元素(主要是氢)聚合成重元素。核聚变过程提供了恒星一生的大部分能量。不过最终,核燃料耗尽,引力开始起主宰作用。在引力作用下,一颗比太阳至少重10倍的恒星会发生塌缩,然后引爆超新星爆发。如果恒星再大一些,达到15~20个太阳质量或者更大的质量,超新星爆发结束后会留下一个致密的核心,这个核心会失控地塌缩,形成黑洞。
黑洞是一片连光线都无法逃脱的空间区域,而光速是任何形式的物质可以达到的速度上限,因此任何物质只要跨过了黑洞的边界——一个被称为事件视界(event  horizon)的二维面,便有去无回。一旦恒星物质或是其他什么东西落入了这个边界,它们与宇宙中的其他部分也就切断了联系,会被无情地拉向黑洞中心的奇点。
正如在宇宙大爆炸起点物理定律会失效,在黑洞的奇点处,已知的物理规律也同样不再适用。与大爆炸不同的是,黑洞的奇点被视界包围着。视界的作用就像是一层坚固的包装纸,防止任何奇点信息泄露出去。黑洞的视界挡住了黑洞外部的观察者,使他们无法观察到奇点的那些不可思议的性质[这就是所谓的宇宙监督假设(cosmic censorship)]。

奇点被视界包裹,这一点十分重要,它使我们能够用熟悉的物理定律来描述和预测我们所能观测到的世界。对于一个远处的观察者而言,黑洞具有简单、光滑、均匀的时空结构,因此仅仅用质量、角动量以及电荷就可以充分描述了。物理学家把这戏称为“黑洞没有毛”——除了质量、角动量和电荷之外,就没有可以区分不同黑洞的细节了。
与黑洞中的奇点相反,大家普遍认为,大爆炸的奇点没有被包裹,它没有事件视界。我们也希望有一种方法,比如存在某种类似视界的东西,能够把这个令人不舒服的奇点与我们隔离开。
我们的理论正是提供了这样一个方法,在这个理论中,宇宙大爆炸其实是一个幻景。我们的理论可以将大爆炸的奇点包裹起来,正如事件视界将黑洞奇点包裹起来一样。这样我们就避开了可怕的大爆炸奇点。

与普通的事件视界相比,大爆炸奇点的“隐身斗篷”有一个关键的不同之处。因为我们感知到的这个宇宙有3个空间维度,因此遮蔽宇宙大爆炸中心奇点的东西也应该是三维的,而不应该像视界一样是二维的。黑洞的二维事件视界是三维空间的恒星塌缩产生的,那我们也可以做出这样一种假设:遮蔽大爆炸奇点的三维事件视界,就应该是四维宇宙里的恒星塌缩产生的了。

额外维理论要求空间维数超过直观的三维,这一想法的提出时间,几乎与广义相对论一样久远。它最早由特奥多尔·卡卢察(Theodor Kaluza)于1919年提出,在上世纪20年代,奥斯卡·克莱因(Oskar Klein)进一步扩展了这一理论。但在此后的半个多世纪里,他们的想法基本被人们遗忘了,直到上世纪80年代才被研究弦论的物理学家重新拾起。最近,科学家利用额外维的思想建立了所谓膜世界(brane worlds)的宇宙学理论。

膜世界理论的基本思想是,我们的三维宇宙是一个子宇宙,它嵌在一个更大的四维(甚至更高维)空间中。这个三维宇宙被称为膜(brane),它所嵌入的大宇宙被称为体(bulk)。我们所知的所有物质和能量形式都束缚在这个三维膜之上,如同电影投影到银幕上——就像柏拉图寓言中,洞穴中的囚徒认为,墙壁上的投影就是真实世界。但引力例外,它能渗透到更高维的“体”之中。

让我们来考虑一下“体”——有四个空间维度的超宇宙,它可能在大爆炸之前就已经存在。我们可以想象,这个四维超宇宙中充斥着四维恒星和四维星系。当这些高维恒星耗尽燃料的时候,就像我们的三维恒星一样,它们就会塌缩成黑洞。
四维黑洞是什么样子的?它也会有一个事件视界,一个有去无回的边界,一旦落入其中连光子都无法逃脱。有所不同的是,普通黑洞的视界是二维的,四维黑洞则会产生一个三维的事件视界。
在模拟了四维恒星的塌缩过程之后,我们发现,在很多情况下,四维恒星塌缩过程中抛射出的物质,的确会在三维事件视界的周围形成一个缓慢扩张的三维膜。我们的宇宙就是这个三维膜,是一个即将塌缩成黑洞的四维恒星的全息图。宇宙大爆炸的奇点被三维事件视界永远遮挡着。

我们的模型有很多优势,首先它避免了宇宙诞生时的裸奇点。不过,对于那些长久以来困扰人们的宇宙学难题,比如宇宙为什么会有近乎平直的空间曲率和高度均匀性,我们的模型能否解决呢?因为四维体宇宙可能已经存在了无限长的时间,经过足够长的时间后,体宇宙中任何的热点和冷点都达到了平衡。如此以来,四维体宇宙就变得光滑,我们的三维膜宇宙就继承了它的光滑性。此外,因为四维黑洞几乎没有任何细节特征(“无毛”),因此我们的三维膜宇宙也应该是光滑的。四维恒星的质量越大,三维膜就越平坦。我们宇宙之所以平坦,是因为它是一颗很重的四维恒星的塌缩遗迹。
这样,我们这种全息论的大爆炸模型,不仅没有用暴胀就解决了均匀性和平坦性难题,而且还避免了宇宙大爆炸起始的裸奇点。
这个想法听起来或许很疯狂,不过有几种方法可以来检验它。一种方法是研究宇宙微波背景辐射。在我们三维膜宇宙之外,可能存在着一些额外的四维体物质——它们是被四维黑洞的引力拉过来的。这些额外物质的热涨落会在三维膜宇宙上造成涨落,从而给宇宙微波背景辐射带来微小的但可探测的扭曲。我们的计算结果和欧洲空间局普朗克卫星的最新观测结果有4%的差异。不过,这个差异可能是由我们尚未正确建模的次级效应造成的。此外,如果四维黑洞有自旋(黑洞有自旋非常常见),那么我们的三维宇宙就不会在各个方向上看起来都是相同的。在不同方向上,我们宇宙的大尺度结构会稍有不同。天文学家或许可以通过细致地研究宇宙微波背景辐射来发现这种方向性。
当然,即便我们的全息论大爆炸理论解决了最大的问题(我们宇宙的起源),它也会带来一系列的新问题,其中最大的一个问题就是:我们宇宙的母宇宙从何而来?

为了回答这个问题,我们也许要再一次从柏拉图那里找寻灵感。当柏拉图寓言中的囚徒走出洞穴时,太阳会灼伤他们的眼睛,他们需要时间来适应洞外明亮的世界。起初,囚徒们只能辨认出影子,不久他们就能够看到月亮和星星。最终,他们会得出结论,太阳是“我们所看的到一切事物的创始人”——白天、黑夜、四季和影子。柏拉图故事中的囚徒们无法理解太阳背后的力量,正如我们无法理解四维体宇宙一样。不过,我们至少已经知道,该去哪里寻找答案了。
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

手机版|UFO中文网

GMT+8, 2025-1-19 11:30

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表