这样说还是很抽象,举个1维空间的例子。这个世界不妨称之为「1+1维」时空(因为是1维空间+1维时间)。简单起见,假设光速为常数 v=1。
时间 t = 0 时,在空间坐标原点 x = 0 处发生一闪光。这时,因为光以有限的速度 v = 1 传播,其路径就是 x = t 或者 x = - t。这里有两条路径,因为在一维空间里,光能朝「前」、「后」两个方向传播。
画在 (x, t) 平面上,光的时空路径 x = t 或者 x = - t 就是通过原点的45度角射线。这射线就是「1+1维」时空的光锥。如下图所示,红色射线就是光锥。
在这个「1+1维」时空里,只有在光锥上的点,才能看到闪光。比如 (x = 2, t = 1) 这个点,就不在光锥上,也看不到闪光。因为在 t = 1 秒的时候,光还没有传播到 x = 2 处。x = 2 处只有在等到 t = 2 时才能看到闪光,于是 (x = 2, t = 2) 这个点正好就在光锥上。
上面这个例子很容易推广到真实的「3+1维」时空(3维空间,1维时间),只不过这时候射线变成了锥子(当然是3维的锥子),所以叫光锥。
所以光锥是时空的一个截面,维度比时空少一维。光锥的存在正是因为光速有限。
回到光传播的问题上。
广义相对论说,时空可以弯曲。于是在这个弯曲的时空里,光就不一定走 x = t 或者 x = - t 这么简单的直线了。比如在「1+1维」的时空里,光的路径可能就是这个样子:
根据时空弯曲的程度,光可以走各种扭曲的路径。
上图中,虽然光的路径已经被扭曲,但是左边 x1(t) 还是在朝「左」传播,右边 x2(t) 还是在朝右传播。那么一个自然的问题是:有没有可能扭曲成这个样子:
也就是说,无论光自己以为在朝哪个方向传播,实际上都是在朝左传播?回答是当然可能!这正是光无法离开黑洞的关键!