Can Time Travel Survive a Theory of Everything 时空旅行在万有理论下可行吗?
Tom Siegfried 汤姆·西格弗里德
In many universes, typically those on TV shows or in movies, time travel is not much more difficult than driving downtown in any major city during rush hour.
In real life, time travel isn't so easy. In fact, it's probably impossible, a fantasy more farfetched than visiting Alice's Wonderland, finding gold at the end of a rainbow or cleansing all the hate speech off of Facebook.
Yet time travel does not necessarily violate the laws of physics. In Einstein's theory of gravity — general relativity — space and time are merged as spacetime, which allows for the possibility of pathways that could bend back to the past and loop back to the future. Such paths are known as closed timelike curves.
Nobody thinks that general relativity's time loops would be practical for time travel even if they are possible. For one thing, they might exist only under certain circumstances — the universe would have to be rotating, and not expanding — as the mathematician Kurt G del showed in the 1940s. But the universe is expanding, and probably isn't rotating, so that dampens the prospects for revisiting the Stone Age or acquiring a pet dinosaur.
Besides, even if such pathways did exist, building a ship to traverse them would cost more than all the DeLoreans (and all other transportation vehicles) ever made. It would need a cruising speed of 140,000 miles per second. And with no place to stop for gas (or whatever), the fuel tank would have to be more than a trillion times the size of an oil tanker.
So for practical purposes, time travel's time has not yet arrived. But even if it's possible only in principle, the potential ramifications for the basic physics of the universe might make it worth the time to investigate it.
A first step would be to attempt to figure out exactly what the relevant laws of physics really are. Einstein's general relativity is great, but indubitably not the last word about the physics of the universe. After all, it coexists uneasily with quantum mechanics, which rules the subatomic world and presumably, since everything is made of subatomic stuff, the rest of the universe as well. Whether the quantum–general relativity combo truly permits time travel might depend on what the ultimate correct theory combining the two turns out to be.
Several candidate theories have been developed for merging general relativity and quantum mechanics into a unified theory. It's an open question whether these candidates would allow time travel in something like the way general relativity does, philosopher Christian Wüthrich of the University of Geneva notes in a new paper.
It's possible, he says, that a theory that supersedes general relativity might still in some way include the equivalent of general relativity's timelike loops.
Even if time loops exist in the fundamental theory, though, there's still no guarantee that they would be preserved in the emergent large-scale spacetime that would be relevant in real life. For that matter, Wüthrich points out, predicting the existence of time travel loops might be taken as evidence against the theory, considering the serious likelihood that time travel really isn't possible at all.
In any case, investigating whether quantum gravity theories retain general relativity's time travel loophole can illuminate many tough questions that must be answered to develop a successful theory and understand how it relates to general relativity. “For this reason alone,” Wüthrich writes, “the question of time travel beyond general relativity is worth our while.”