如何留住人才是中国发展 AI 面临的另一大难题。根据学界和业界联合撰写的《2018 年中国 AI 发展报告》,截至 2017 年底,中国的 AI 研究者和工程师数量达到了 18200 人,居世界第二。但在顶级 AI 研究者(高产、高引的研究者)排行榜中,中国仅排第六。
在美国数据、技术和公共政策交叉研究智库 Center for Data Innovation 发布的一份中、美、欧 AI 实力对比报告中,中国的 AI 人才状况同样令人堪忧。报告显示,截至 2017 年,中国的顶级 AI 人才(h 指数排名前 10%)还不到美国的 1/5。
Ma 表示,很多计算机科学家通常在美国接受教育,毕业后就会留在那儿,加入一些全球顶级的技术公司。
但有迹象表明,这种情况正在发生好转。中国的 AI 机构正尝试用高薪吸引这些研究者回国。例如,在郑南宁教授所在的机器人中心,一些教授拿到的薪资是其他教授大学薪水的 2~3 倍。此外,中国的教育系统也加大了 AI 人才的培养力度,去年有 35 所大学获批“人工智能”本科专业,清华等名校更是设立了多个 AI 研究和人才培养中心,力争解决中国的 AI 人才短缺问题。
郑教授还补充说,他所在的机器人中心还提供了一套更为全面的评估体系,以提高人才吸引。相比之下,很多中国大学倾向于以发表论文的数量作为奖励标准。此外,他还创建了一个招聘系统,可以绕过大学集中化的过程,帮助科学家更快地组建工程师团队,该系统现在正在开展 AI 方面的本科课程。
中国发展 AI 的企业和人口优势
Ding 表示,考虑到腾讯、百度和阿里巴巴三家核心科技企业日益提升的专业技能和业界影响力,相信中国到 2020 年拥有全球领先 AI 公司的计划能够达成。他说道:“尽管尚未达到谷歌和微软等美国科技巨擘那样的水平,但这三家企业已经成为了 AI 领域的全球领先者。”
根据纽约创投研究机构 CB Insights 的数据显示,中国至少还有 10 家估值超过 10 亿美元的 AI 创投企业。
此外,虽然在风险投资和私募股权融资规模方面不敌美国,但中国是成功将 AI 纳入公司业务流程百分比最高的国家。2018 年,中国在这一方面的比例领先全球(32%),高于美国(22%)和欧盟(约 18%)。另一方面,有 53% 的中国公司已经在开展人工智能应用的试点,这一数据也大大领先第二名美国(29%)。
Ma 表示,中国的一大优势是其巨大的人口规模,这为训练 AI 系统提供了充足的人员样本和独特机遇,比如训练疾病预测软件所需的大型患者数据集,而这些数据集可以为 AI 研发带来很大的优势。
Ma 表示,如果中国想要在 AI 领域产生国际影响,实施适当的治理同样也很重要,只有这样中国的 AI 研究者和公司才能建立必要的信任,从而赢得世界各地的用户,并与其他国家的研究者展开合作。与其他国家一样,中国也已经开始为 AI 的发展和应用制定伦理准则。所以,中国 AI 公司需要承诺实施良好的治理,这样才能获得全局数据。
今年 6 月,中国国家新一代人工智能治理专业委员会发布了 AI 开发人员所应遵守的《新一代人工智能治理原则——发展负责任的人工智能》,提出了人工智能治理的框架和指南,明确提出了和谐友好、公平公正、包容共享、尊重隐私、安全可控、共担责任、开放协作、敏捷治理等八项原则。这八项原则与经济合作与发展组织 5 月投票通过且为世界各国政府所采纳的人工智能原则不谋而合。
此外,所有国家和地区所面临的的另一项关键挑战是算法做决策时的透明度。这方面并没有统一的标准,因而中国以及其他国家依然在探索如何推进这一进程。例如,欧盟出台的《通用数据保护条例》(General Data Protection Regulation)赋予用户权利,使他们可以在涉及自身时询问算法如何做出决策。
参考来源:
https://www.nature.com/articles/d41586-019-02360-7 (原文标题:
Will China lead the world in AI by 2030? )
https://www.datainnovation.org/2019/08/who-is-winning-the-ai-race-china-the-eu-or-the-united-states/